**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**982

# Search results for: gray-level co-occurrence matrix

##### 982 A New Approach for the Fingerprint Classification Based On Gray-Level Co- Occurrence Matrix

**Authors:**
Mehran Yazdi,
Kazem Gheysari

**Abstract:**

In this paper, we propose an approach for the classification of fingerprint databases. It is based on the fact that a fingerprint image is composed of regular texture regions that can be successfully represented by co-occurrence matrices. So, we first extract the features based on certain characteristics of the cooccurrence matrix and then we use these features to train a neural network for classifying fingerprints into four common classes. The obtained results compared with the existing approaches demonstrate the superior performance of our proposed approach.

**Keywords:**
Biometrics,
fingerprint classification,
gray level cooccurrence
matrix,
regular texture representation.

##### 981 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text

**Authors:**
Paolo Fantozzi,
Luigi Laura,
Umberto Nanni

**Abstract:**

**Keywords:**
Cooccurrence graph,
entity relation graph,
unstructured text,
weighted distance.

##### 980 On Generalized New Class of Matrix Polynomial Set

**Authors:**
Ghazi S. Kahmmash

**Abstract:**

New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.

**Keywords:**
Generating functions,
Recurrences relation and Generalization of the new class matrix polynomial set.

##### 979 The Partial Non-combinatorially Symmetric N10 -Matrix Completion Problem

**Authors:**
Gu-Fang Mou,
Ting-Zhu Huang

**Abstract:**

An n×n matrix is called an N1 0 -matrix if all principal minors are non-positive and each entry is non-positive. In this paper, we study the partial non-combinatorially symmetric N1 0 -matrix completion problems if the graph of its specified entries is a transitive tournament or a double cycle. In general, these digraphs do not have N1 0 -completion. Therefore, we have given sufficient conditions that guarantee the existence of the N1 0 -completion for these digraphs.

**Keywords:**
Matrix completion,
matrix completion,
N10 -matrix,
non-combinatorially symmetric,
cycle,
digraph.

##### 978 Fuzzy Adjacency Matrix in Graphs

**Authors:**
Mahdi Taheri,
Mehrana Niroumand

**Abstract:**

**Keywords:**
Graph,
adjacency matrix,
fuzzy numbers

##### 977 Featured based Segmentation of Color Textured Images using GLCM and Markov Random Field Model

**Authors:**
Dipti Patra,
Mridula J

**Abstract:**

In this paper, we propose a new image segmentation approach for colour textured images. The proposed method for image segmentation consists of two stages. In the first stage, textural features using gray level co-occurrence matrix(GLCM) are computed for regions of interest (ROI) considered for each class. ROI acts as ground truth for the classes. Ohta model (I1, I2, I3) is the colour model used for segmentation. Statistical mean feature at certain inter pixel distance (IPD) of I2 component was considered to be the optimized textural feature for further segmentation. In the second stage, the feature matrix obtained is assumed to be the degraded version of the image labels and modeled as Markov Random Field (MRF) model to model the unknown image labels. The labels are estimated through maximum a posteriori (MAP) estimation criterion using ICM algorithm. The performance of the proposed approach is compared with that of the existing schemes, JSEG and another scheme which uses GLCM and MRF in RGB colour space. The proposed method is found to be outperforming the existing ones in terms of segmentation accuracy with acceptable rate of convergence. The results are validated with synthetic and real textured images.

**Keywords:**
Texture Image Segmentation,
Gray Level Cooccurrence
Matrix,
Markov Random Field Model,
Ohta colour space,
ICM algorithm.

##### 976 Inverse Matrix in the Theory of Dynamic Systems

**Authors:**
R. Masarova,
M. Juhas,
B. Juhasova,
Z. Sutova

**Abstract:**

**Keywords:**
Dynamic system,
transfer matrix,
inverse matrix,
modeling.

##### 975 Numerical Treatment of Matrix Differential Models Using Matrix Splines

**Authors:**
Kholod M. Abualnaja

**Abstract:**

This paper consider the solution of the matrix differential models using quadratic, cubic, quartic, and quintic splines. Also using the Taylor’s and Picard’s matrix methods, one illustrative example is included.

**Keywords:**
Matrix Splines,
Cubic Splines,
Quartic Splines.

##### 974 The Relationship of Eigenvalues between Backward MPSD and Jacobi Iterative Matrices

**Authors:**
Zhuan-de Wang,
Hou-biao Li,
Zhong-xi Gao

**Abstract:**

In this paper, the backward MPSD (Modified Preconditioned Simultaneous Displacement) iterative matrix is firstly proposed. The relationship of eigenvalues between the backward MPSD iterative matrix and backward Jacobi iterative matrix for block p-cyclic case is obtained, which improves and refines the results in the corresponding references.

**Keywords:**
Backward MPSD iterative matrix,
Jacobi iterative matrix,
eigenvalue,
p-cyclic matrix.

##### 973 On Positive Definite Solutions of Quaternionic Matrix Equations

**Authors:**
Minghui Wang

**Abstract:**

**Keywords:**
Matrix equation,
Quaternionic matrix,
Real representation,
positive (semi)definite solutions.

##### 972 Connectivity Estimation from the Inverse Coherence Matrix in a Complex Chaotic Oscillator Network

**Authors:**
Won Sup Kim,
Xue-Mei Cui,
Seung Kee Han

**Abstract:**

We present on the method of inverse coherence matrix for the estimation of network connectivity from multivariate time series of a complex system. In a model system of coupled chaotic oscillators, it is shown that the inverse coherence matrix defined as the inverse of cross coherence matrix is proportional to the network connectivity. Therefore the inverse coherence matrix could be used for the distinction between the directly connected links from indirectly connected links in a complex network. We compare the result of network estimation using the method of the inverse coherence matrix with the results obtained from the coherence matrix and the partial coherence matrix.

**Keywords:**
Chaotic oscillator,
complex network,
inverse coherence matrix,
network estimation.

##### 971 Solving Linear Matrix Equations by Matrix Decompositions

**Authors:**
Yongxin Yuan,
Kezheng Zuo

**Abstract:**

In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided.

**Keywords:**
Matrix equation,
Generalized inverse,
Generalized
singular-value decomposition.

##### 970 The Convergence Results between Backward USSOR and Jacobi Iterative Matrices

**Authors:**
Zuan-De Wang,
Hou-biao Li,
Zhong-xi Gao

**Abstract:**

In this paper, the backward Ussor iterative matrix is proposed. The relationship of convergence between the backward Ussor iterative matrix and Jacobi iterative matrix is obtained, which makes the results in the corresponding references be improved and refined.Moreover,numerical examples also illustrate the effectiveness of these conclusions.

**Keywords:**
Backward USSOR iterative matrix,
Jacobi iterative matrix,
convergence,
spectral radius

##### 969 An Algorithm of Ordered Schur Factorization For Real Nonsymmetric Matrix

**Authors:**
Lokendra K. Balyan

**Abstract:**

**Keywords:**
Schur Factorization,
Eigenvalues of nonsymmetric matrix,
Orthoganal matrix.

##### 968 Tree Sign Patterns of Small Order that Allow an Eventually Positive Matrix

**Authors:**
Ber-Lin Yu,
Jie Cui,
Hong Cheng,
Zhengfeng Yu

**Abstract:**

**Keywords:**
Eventually positive matrix,
sign pattern,
tree.

##### 967 Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel

**Authors:**
Seok Min Choi,
Minho Bang,
Seuong Yun Kim,
Hyungmin Lee,
Won-Gu Joo,
Hyung Hee Cho

**Abstract:**

**Keywords:**
Matrix cooling,
rib,
heat transfer,
gas turbine.

##### 966 Bounds on the Second Stage Spectral Radius of Graphs

**Authors:**
S.K.Ayyaswamy,
S.Balachandran,
K.Kannan

**Abstract:**

Let G be a graph of order n. The second stage adjacency matrix of G is the symmetric n × n matrix for which the ijth entry is 1 if the vertices vi and vj are of distance two; otherwise 0. The sum of the absolute values of this second stage adjacency matrix is called the second stage energy of G. In this paper we investigate a few properties and determine some upper bounds for the largest eigenvalue.

**Keywords:**
Second stage spectral radius,
Irreducible matrix,
Derived graph

##### 965 Some New Subclasses of Nonsingular H-matrices

**Authors:**
Guangbin Wang,
Liangliang Li,
Fuping Tan

**Abstract:**

In this paper, we obtain some new subclasses of non¬singular H-matrices by using a diagonally dominant matrix

**Keywords:**
H-matrix,
diagonal dominance,
a diagonally dominant matrix.

##### 964 Redundancy Component Matrix and Structural Robustness

**Authors:**
Xinjian Kou,
Linlin Li,
Yongju Zhou,
Jimian Song

**Abstract:**

We introduce the redundancy matrix that expresses clearly the geometrical/topological configuration of the structure. With the matrix, the redundancy of the structure is resolved into redundant components and assigned to each member or rigid joint. The values of the diagonal elements in the matrix indicates the importance of the corresponding members or rigid joints, and the geometrically correlations can be shown with the non-diagonal elements. If a member or rigid joint failures, reassignment of the redundant components can be calculated with the recursive method given in the paper. By combining the indexes of reliability and redundancy components, we define an index concerning the structural robustness. To further explain the properties of the redundancy matrix, we cited several examples of statically indeterminate structures, including two trusses and a rigid frame. With the examples, some simple results and the properties of the matrix are discussed. The examples also illustrate that the redundancy matrix and the relevant concepts are valuable in structural safety analysis.

**Keywords:**
Structural robustness,
structural reliability,
redundancy component,
redundancy matrix.

##### 963 Newton-Raphson State Estimation Solution Employing Systematically Constructed Jacobian Matrix

**Authors:**
Nursyarizal Mohd Nor,
Ramiah Jegatheesan,
Perumal Nallagownden

**Abstract:**

**Keywords:**
State Estimation (SE),
Weight Least Square (WLS),
Newton-Raphson State Estimation (NRSE),
Jacobian matrix H.

##### 962 Conjugate Gradient Algorithm for the Symmetric Arrowhead Solution of Matrix Equation AXB=C

**Authors:**
Minghui Wang,
Luping Xu,
Juntao Zhang

**Abstract:**

*AXB=C*and the associate optimal approximation problem are considered for the symmetric arrowhead matrix solutions in the premise of consistency. The convergence results of the method are presented. At last, a numerical example is given to illustrate the efficiency of this method.

**Keywords:**
Iterative method,
symmetric arrowhead matrix,
conjugate gradient algorithm.

##### 961 A Universal Model for Content-Based Image Retrieval

**Authors:**
S. Nandagopalan,
Dr. B. S. Adiga,
N. Deepak

**Abstract:**

**Keywords:**
Content Based Image Retrieval (CBIR),
Cooccurrencematrix,
Feature vector,
Edge Histogram Descriptor(EHD),
Greedy strategy.

##### 960 Membership Surface and Arithmetic Operations of Imprecise Matrix

**Authors:**
Dhruba Das

**Abstract:**

**Keywords:**
Imprecise number,
Imprecise vector,
Membership
surface,
Imprecise matrix.

##### 959 On the Positive Definite Solutions of Nonlinear Matrix Equation

**Authors:**
Tian Baoguang,
Liang Chunyan,
Chen Nan

**Abstract:**

In this paper, the nonlinear matrix equation is investigated. Based on the fixed-point theory, the boundary and the existence of the solution with the case r>-δ_{i} are discussed. An algorithm that avoids matrix inversion with the case -1<-δ_{i}<0 is proposed.

**Keywords:**
Nonlinear matrix equation,
Positive definite solution,
The maximal-minimal solution,
Iterative method,
Free-inversion

##### 958 An Iterative Method for the Symmetric Arrowhead Solution of Matrix Equation

**Authors:**
Minghui Wang,
Luping Xu,
Juntao Zhang

**Abstract:**

**Keywords:**
Symmetric arrowhead matrix,
iterative method,
like-minimum norm,
minimum norm,
Algorithm LSQR.

##### 957 Spectroscopic and SEM Investigation of TCPP in Titanium Matrix

**Authors:**
R.Rahimi,
F.Moharrami

**Abstract:**

Titanium gels doped with water-soluble cationic porphyrin were synthesized by the sol–gel polymerization of Ti (OC4H9)4. In this work we investigate the spectroscopic properties along with SEM images of tetra carboxyl phenyl porphyrin when incorporated into porous matrix produced by the sol–gel technique.

**Keywords:**
TCPP,
Titanium matrix,
UV/Vis spectroscopy,
SEM.

##### 956 Two Iterative Algorithms to Compute the Bisymmetric Solution of the Matrix Equation A1X1B1 + A2X2B2 + ... + AlXlBl = C

**Authors:**
A.Tajaddini

**Abstract:**

In this paper, two matrix iterative methods are presented to solve the matrix equation A1X1B1 + A2X2B2 + ... + AlXlBl = C the minimum residual problem l i=1 AiXiBi−CF = minXi∈BRni×ni l i=1 AiXiBi−CF and the matrix nearness problem [X1, X2, ..., Xl] = min[X1,X2,...,Xl]∈SE [X1,X2, ...,Xl] − [X1, X2, ..., Xl]F , where BRni×ni is the set of bisymmetric matrices, and SE is the solution set of above matrix equation or minimum residual problem. These matrix iterative methods have faster convergence rate and higher accuracy than former methods. Paige’s algorithms are used as the frame method for deriving these matrix iterative methods. The numerical example is used to illustrate the efficiency of these new methods.

**Keywords:**
Bisymmetric matrices,
Paige’s algorithms,
Least
square.

##### 955 Iterative solutions to the linear matrix equation AXB + CXTD = E

**Authors:**
Yongxin Yuan,
Jiashang Jiang

**Abstract:**

**Keywords:**
matrix equation,
iterative algorithm,
parameter estimation,
minimum norm solution.

##### 954 The BGMRES Method for Generalized Sylvester Matrix Equation AXB − X = C and Preconditioning

**Authors:**
Azita Tajaddini,
Ramleh Shamsi

**Abstract:**

**Keywords:**
Linear matrix equation,
Block GMRES,
matrix Krylov
subspace,
polynomial preconditioner.

##### 953 Image Sensor Matrix High Speed Simulation

**Authors:**
Z. Feng,
V. Viswanathan,
D. Navarro,
I. O'Connor

**Abstract:**

This paper presents a new high speed simulation methodology to solve the long simulation time problem of CMOS image sensor matrix. Generally, for integrating the pixel matrix in SOC and simulating the system performance, designers try to model the pixel in various modeling languages such as VHDL-AMS, SystemC or Matlab. We introduce a new alternative method based on spice model in cadence design platform to achieve accuracy and reduce simulation time. The simulation results indicate that the pixel output voltage maximum error is at 0.7812% and time consumption reduces from 2.2 days to 13 minutes achieving about 240X speed-up for the 256x256 pixel matrix.

**Keywords:**
CMOS image sensor,
high speed simulation,
image
sensor matrix simulation.